### Process modeling day 1 slides

Renata Diaz

## Sections

- 1. <u>Theory and motivation of process modeling</u>
- 2. <u>An example: Hubbell's neutral theory</u>
- 3. <u>Exercise 1: Playing neutral games</u>
- 4. Exercise 2: Coding up neutral theory in R
- 5. <u>Exercise 3: Exploring parameter changes in neutral theory</u>
- 6. Inferring parameters from results using neutral theory

## Theory and motivation of process modeling

## Theory and motivation of process modeling

- 1. What do we *mean* by process modeling, anyway?
- 2. What are the *applications* of process modeling for ecological and evolutionary dynamics?
- 3. What are the *limitations* of a process modeling approach?

### What do we *mean* by process modeling, anyway?

• Have you ever worked with or encountered a process model?

### What do we mean by process modeling, anyway?

- Process models are games...
  - Scenarios play out according to rules
  - Outcomes depend on the rules + chance





NONOGRAPHS IN POPULATION BIOLOGY . 32

### What do we mean by process modeling, anyway?

- Games may be simple or complex
  - (Even simple games can be complex!)
  - Not necessarily deterministic
  - Not necessarily solvable analytically





• Nearly unlimited flexibility for exploring processes involving...

stochasticity Large temporal/spatial scales context dependence feedbacks multiple levels of organization complexity

• Use case: hypothesis exploration

## How would I expect X to affect Y?

• Use case: null models

## How would I expect my system to look, at random?

• Use case: large swaths of time or space

### How will this system look in 1000 years, under different scenarios?

• Use case: explaining empirical data

What generative processes are (not) consistent with empirical observations?

• Can you think of an application for a process model in your area of interest?

## What are the *limitations* of a process modeling approach?

# What are the *limitations* of a process modeling approach?

```
read the rules!!!
computationally expensive
pattern != process
"model identifiability"
```

## An example: Hubbell's Neutral Theory

- 1. How do we fit UNTB into a process model framework?
- 2. What are the rules and outcomes of UNTB?
- 3. Let's play the game!



The Unified Neutral Theory of

NONOGRAPHS IN POPULATION BIOLOGY . 32

# How do we fit UNTB into a process model framework?

- Entities: Ecological communities made of individuals
- Individuals die, give birth, immigrate, and speciate according to rules

• Model outcomes are semi-deterministic

### What are the rules and outcomes of neutral theory?



### What are the rules and outcomes of neutral theory?



## The playing field

#### Metacommunity



#### Local community



#### All-time species list





Each time step, an individual from the local community dies.

All-time species list







Each time step, an individual from the local community dies.

They are replaced via either a **local birth** or **immigration** from the metacommunity.

All-time species list







Each time step, an individual from the local community dies.

They are replaced via either a **local birth** or **immigration** from the metacommunity.

Sometimes, a speciation event occurs and a new species is added.

All-time species list







Each time step, an individual from the local community dies.

They are replaced via either a **local birth** or **immigration** from the metacommunity.

Sometimes, a speciation event occurs and a new species is added.

This repeats.

All-time species list





### The parameters



All-time species list



Local community



*Jm*: The number of individuals in the metacommunity *Sm*: The number of species in the metacommunity *J*: The number of individuals in the local community

*m*: The probability that an immigration event occurs*v*: The probability that a speciation event occurs

Metacommunity (size = Jm)



 $\frac{1}{I}$ 

An individual is chosen to die.

All-time species list





Metacommunity (size = Jm)



 $\frac{1}{I}$ 

An individual is chosen to die.

All-time species list





Metacommunity (size = Jm)



An individual is chosen to die.

 $\frac{1}{1}$ 

A **birth** or **immigration** event occurs

All-time species list





Metacommunity (size = Jm)



An individual is chosen to die.

1

A **birth** or **immigration** event occurs

If **birth**, a parent is chosen *reference* from the **local** community.

All-time species list







A **birth** or **immigration** event occurs

If **birth**, a parent is chosen *from* the **local** community. If **immigration**, a parent is chosen **a** from the **meta** community.







Metacommunity (size = Jm)



All-time species list



Local community (size = J)



The new offspring replaces the dead individual in the local community.

 $\frac{1}{1}$ 

An individual is chosen to die.

A **birth** or **immigration** event occurs

If **birth**, a parent is chosen *from* the **local** community.

If **immigration**, a parent is chosen 🐨 from the **meta** community.

Sometimes, a **speciation** event occurs.

If not, the new offspring is the **same species** as its parent. If so, the new offspring is a **new species**, and a new species joins the all-time list.



the all-time list.


#### The outcomes

Local community (size = J)



#### The outcomes

Local community (size = J)



#### The outcomes



Local community (size = J)

| Q | Hill number |
|---|-------------|
| 0 | 3           |
| 1 | 2.58        |
| 2 | 2.27        |

Coffee break.

(Then, we'll play!)

## Break to play neutral games.

### (Not on a computer.)

### How could we make this more efficient?

## How could we make this more efficient?



## Break to code up UNTB in R.



# The process



## Break to explore UNTB parameter settings in R.



# Inferring parameters from results in UNTB

# Inferring parameters from results in UNTB

- 1. What do we mean by inferring parameters from outcomes?
- 2. How do we approach this for UNTB?
- 3. What are the challenges we run into?

# What do we mean by inferring parameters from outcomes?

 Assuming the *processes* in a model accurately describe the processes that generated some data\*\*\*...

\*\*\* This is a big assumption!

# What do we mean by inferring parameters from outcomes?

 Assuming the *processes* in a model accurately describe the processes that generated some data\*\*\*...

...we can use our knowledge of the model to guess the parameter settings that generated a specific outcome.

\*\*\* This is a big assumption!

# What do we mean by inferring parameters from outcomes?

 Assuming the *processes* in a model accurately describe the processes that generated some data\*\*\*...

...we can use our knowledge of the model to guess the parameter settings that generated a specific outcome.

• This is the backbone of likelihood-free inference (coming up soon!)

\*\*\* This is a big assumption!

# The (general) model structure

Run simulations over a wide range of parameter settings.

Input parameters (*m*, *v*, *J*, *Jm*, *Sm*)

produce

Outcome variables (hill0, hill1, hill2)



# The (general) model structure

Run simulations over a wide range of parameter settings.

Input parameters (*m*, *nu*, *J*, *Jm*, *Sm*) Outcome variables (hill0, hill1, hill2)







Fit a model of the form *parameters* ~ *results* 

Outcome variables (hill0, hill1, hill2)





| ( <i>m</i> , | nu, | J, . | Im, | Sm) |
|--------------|-----|------|-----|-----|
|              |     |      |     |     |

Input parameters

# The (general) model structure

Run simulations over a wide range of parameter settings.

Input parameters (*m*, *nu*, *J*, *Jm*, *Sm*) Outcome variables (hill0, hill1, hill2)





Fit a model of the form *parameters* ~ *results* 



Use this model to estimate the **parameter values** that produced **observed outcomes** 

Focal outcome variables Generating parameters (hill0 = ..., hill1 = ..., ...) estimate (m = ..., nu = ..., ...)

produce

## An example: predicting *M* and *Nu* from UNTB

# Run simulations over a range of parameters

**Constant parameters** 

ParameterValue1Jm100002Sm10003J10004Timesteps1000

Parameters sampled 10000 combinations



## Collect results

|            | Jm    | Sm   | J    | timesteps | Nu   | М       | hill0 | hill1 | hill2 |
|------------|-------|------|------|-----------|------|---------|-------|-------|-------|
| 1          | 10000 | 1000 | 1000 | 1000      | 0.52 | 0.36    | 449   | 41.95 | 4.02  |
| 2          | 10000 | 1000 | 1000 | 1000      | 0.18 | 0.50    | 298   | 23.92 | 3.31  |
| 3          | 10000 | 1000 | 1000 | 1000      | 0.52 | 0.15    | 379   | 25.86 | 3.15  |
| 4          | 10000 | 1000 | 1000 | 1000      | 0.39 | 0.59    | 408   | 41.43 | 4.22  |
| 5          | 10000 | 1000 | 1000 | 1000      | 0.02 | 0.31    | 163   | 6.36  | 1.82  |
| 6          | 10000 | 1000 | 1000 | 1000      | 0.31 | 0.18    | 290   | 14.82 | 2.48  |
|            |       |      |      |           |      |         |       |       |       |
|            |       |      |      |           |      |         |       |       |       |
| Parameters |       |      |      |           |      | Outcome | es    |       |       |

#### Visualize Hill numbers vs. M, Nu



#### Relating outcomes to parameters



### Train a model

## Train a model

m\_rf\_model

Call: randomForest(formula = M ~ hill0 + hill1 + hill2, data = all\_hills) Type of random forest: regression Number of trees: 500 No. of variables tried at each split: 1 Mean of squared residuals: 0.003975154

% Var explained: 86.76

## Explore model accuracy



#### Train a model

## Train a model

nu\_rf\_model

Call: randomForest(formula = Nu ~ hill0 + hill1 + hill2, data = all hills) Type of random forest: regression Number of trees: 500 No. of variables tried at each split: 1 Mean of squared residuals: 0.001456496 % Var explained: 95.09

#### Explore model accuracy

Nu: Predicted vs. observed



## Apply model to new (simulated) data

new\_M <- runif(1, 0, 0.6)
new\_Nu <- runif(1, 0, 0.6)</pre>

predicted\_M <- predict(m\_rf\_model, newdata = new\_hills)
predicted\_Nu <- predict(nu\_rf\_model, newdata = new\_hills)</pre>

## Apply model to **new** (simulated) data

| new_M     | predicted_M  |
|-----------|--------------|
| 0.3258534 | 0.2825361    |
| new_Nu    | predicted_Nu |
| 0.4382455 | 0.3794579    |

## Apply model to new (simulated) data

| new_M     | predicted_M  |
|-----------|--------------|
| 0.3258534 | 0.2825361    |
| new_Nu    | predicted_Nu |
| 0.4382455 | 0.3794579    |

Estimation is good but not perfect!

#### Challenges to estimation



## How could we improve?
## How could we improve?

- Different parameters, different rules
- More data dimensions
- Stay tuned!!!

## Recap

- In principle, we can use process models to infer the parameters that generate observed data
- This is complicated by:
  - Out-of-sample prediction
  - Model identifiability
  - Model run time
  - The underlying validity of the process model

## Looking ahead...

## Flexible, scalable, multidimensional, and generally much mess-ier and more powerful models!